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Abstract— Roadside LiDAR is helping to build intelligent and 
safe transportation. Object detection is a challenging and 
fundamental problem in computer vision. Moreover, the vehicle 
detection system is essential to Intelligent Transportation 
Systems (ITS). Many researchers in the transportation field 
spend an enormous amount of money to collect and analyze 
traffic data to optimize street systems. This research aims to 
develop a case study for a vehicle detection system in a complex 
roadway area based on LiDAR through an embedded system.  
For this purpose, an embedded GPU integrated (Nvidia 
JetsonTX2) with low power and high performance has been 
picked, which supports an unsupervised learning algorithm to be 
run simultaneously and a detection algorithm to be applied for 
point cloud recognition. We also discuss the structure of the 
architectures of LiDAR-based roadside systems, and lidar data 
processing for vehicle detection. In the real-scanned HDL-32E 
Velodyne 3D LiDAR dataset, our proposed method can achieve 
vehicle detection accuracy up to 82.7% in several real-scenes 
datasets. The future research directions to contribute resources 
beneficially to industry, academia, and government agencies for 
choosing appropriate LiDAR-based technologies for their vehicle 
monitoring systems.  
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I. INTRODUCTION  

As the number of vehicles has increased dramatically, this 
causes severe traffic congestion in big cities in many 
countries. One of the good solutions to reduce traffic 
congestion is a traffic monitoring system [1]. The Intelligent 
Transportation System (ITS) is used to gather traffic data such 
as the number of vehicles, vehicle speed, and types of 
vehicles. These collected data can be used for traffic analysis 
to enhance the safety of transportation, predict future 
transportation demands, and take advantage of roadway 
systems [2]. Vehicle detection is the main functionality of the 
traffic monitoring system. Due to dramatic technical 
challenges, various research papers have been considered 
regarding vehicle detection systems. The contributions of this 
article are summarized as follows. 

• This article is using the architecture with computing 
at the edge using a low-power embedded computer Jetson 
TX2. 

• Propose a collecting and processing hardware and 
processing point cloud data pipeline. 

• Experiment with vehicle detection based on 
DBSCAN unsupervised learning methods with different 
scenes. 

II. ARCHITECTURE OF THE LIDAR ROADSIDE SYSTEM 

The system architecture of the LiDAR-based connected 
roadway infrastructure integrates roadside LiDAR sensors, 
traffic data processing system, and software-connected road 
users. The system is shown in Fig.1. 

 

Fig. 1. The system architecture of the roadside LiDAR-based 
connected roadway infrastructure 

A. Roadside LiDAR sensors  

LiDAR sensors can be installed at two or four corners to cover 
the full coverage of the intersection area, which depends on 
the intersection size and geometry of the roadway. The 360-
degree 3D LiDAR sensors were used for vehicle detection. In 
our work, the roadside LiDAR sensors used high-resolution 
HDL-32E and average-resolution VLP-16 LiDAR sensors 
from the Velodyne brand. The HDL-32E LiDAR can generate 
360-degree 3D point cloud data of up to 1.39 million points 
per second by using 32 internal laser/detector, which detects a 
range of up to 100 m and an average accuracy of ±2 cm. VLP-
16 LiDAR has only 16 laser/detector, which can create 
600,000 points per second, and the range is also up to 100 m, 
which lowers the accuracy to only ±3 cm. The rotational speed 
of the LiDAR is about 5-20 rotations per second, which covers 
the vertical field of view (FOV) about 45-degree for HDL-32E 



LiDAR and 30-degree for VLP-16 [3]. Maintaining the 
Integrity of the Specifications 

B. Embedded computer 

Embedded computer at each intersection is to process 
collecting data from LiDAR sensors. In this study, the Jetson 
TX2 has been the main processor unit. It has integrated the 
GPU with 256-CUDA cores, Quad-Core ARM Cortex A57, 
8GB memory, and 32 GB disk space. Power saving is the unit 
key point of this module, which consumes only 7.5W~15W 
[4]. It is suitable for AI computing at the edge applications, 
especially computer vision applications. 

C. External hard drives and Peripherals 

 Hard drives are used for storing and collecting data, which are 
optional and depend on the architecture of the systems. If the 
embedded computer can process the real-time data and send 
this data over the internet through the gateway, in this case the 
hard drives are not necessary. Otherwise, data can be stored on 
the hard disks for backup, diagnostic and debugging 
applications. The hard drives have not been used in our 
system, because the main approach in our system is toward 
computing at the edge, and uploading these data to the cloud 
server. Other peripherals such as laptops, monitors, light 
sensors, and GPS-module are helping the system work more 
reliably and easy to monitoring and debug systems. 

D. Traffic data processing 

Data collected from the roadside system have been sent to the 
cloud and traffic data center. The traffic data center is for data 
archiving, data integration, performing the traffic operation, 
traffic control with optimization decisions, and helping the 
human make the most suitable choices to control the system. 
This data center can also help the road users fletch, and 
visualize the information from the real situation in the 
roadway. 

E. Software-connected road users 

 Users can get real-time road information about congestion 
status, numbers of vehicles on roads, the density of vehicles 
on the roads, average moving speed in consider areas, and 
related traffic information. The software can be developed on 
multiple platforms and devices such as smartphones, tablets, 
PC, and car HMI. 

III. LIDAR DATA PROCESSING 

The vehicle detection process and visualization LiDAR data 
processing steps are shown in Fig.2. 

A. Point cloud Preprocessing step 

LiDAR can generate a huge amount of 3D point clouds which 
require high computing powers. Therefore, the raw point 
cloud must be filtered before going to the ground point 
removal step. The crop point cloud is adopted to filter the 
sparse points within a distance greater than 50m from LiDAR, 
and remove the center lane area. Voxel grid filtering created a 
cubic grid and filtered the point cloud by only leaving a single 
point per voxel cube. 

 

 

Fig. 2. Vehicles detection process (a) and visualization LiDAR data 
processing step (b) 

Then the larger the cube length the lower the resolution of the 
point cloud, which is the number of points data also 
decreasing, which can be seen in Fig. 3.  

 

Fig. 3. Voxel down sampling with various voxel sizes between 0.05 
to 2.0  

B. Ground point removing 

LiDAR with 45/30-degree vertical FOV can create a ground 
point cloud of the road when they are working. These ground 
points take up a large proportion of the raw point cloud, which 
intensely affects the subsequent processing. In this step, the 
RANSAC (Random Sample Consensus) method was used to 
filter the ground plane [6]. The RANSAC operates for a max 
number of iterations and returns the model with the best fit. 
Each iteration randomly picks a subsample of the point cloud 
data and fits a model through a point cloud plane. Then the 
iteration with the highest number of inliers or the lowest noise 
is used as the best model. The RANSAC algorithm for ground 
point removal is described below. 

 

Fig. 4. Result of the RANSAC with number of iterations is remaining 
100, and different threshold distance 1.5 (left), 0.7 (middle), 0.3 

(right) 



When changing the different threshold distances the inliers 
were changing, and the number of iterations can also affect the 
computing time and finding the best fit model. In our work, 
the good number for getting a good result is a threshold 
distance value of 0.3 and the iteration value of 100. The result 
of the RANSAC is shown in Fig. 4. The red point cloud is the 
outliers, and the green one is the inliers after running the 
algorithm. 

 

Fig. 5. Processing steps for RANSAC: Voxel down sampling to 
reduce point cloud data (left) Crop in the Y and Z-axis and center 

area (middle) Result of the RANSAC filter out the road plane (right) 

Processing steps for RANSAC have followed steps, as shown 
in Fig. 5: Voxel down sampling to reduce point cloud data, 
next crop point cloud data in the Y and Z-axis and center area, 
then using RANSAC for plane segmentation to remove road 
plane. 
 

C. DBSCAN Unsupervised clustering approach 

To combine local point cloud clusters given a point cloud 
from LiDAR sensor. Clustering algorithms can be used for 
this objective. It includes a variety of techniques based on 
various distance units. For instance, Gaussian mixtures 
(Mahalanobis distance to centers) [7], Affinity propagation 
(graph distance) [8], Mean-shift (distance between points) [9], 
and Spectral clustering (graph distance) [10]. The researchers 
developed unsupervised learning techniques that could build 
feature detector layers without the need for labeled data. Deep 
learning interest was rekindled in part due to unsupervised 
learning. Unsupervised learning will likely become much 
more significant in the long run [11].  
This study uses the Density-based spatial clustering of 
applications with the noise clustering method. Density-Based 
Clustering to the concept that a cluster in data space is a 
contiguous region of high point density, separated from other 
similar clusters by contiguous regions of low point density 
[12], clustering refers to unsupervised learning approaches 
that discover unique clusters in the data. The unsupervised 
learning DBSCAN algorithm for vehicle clustering is shown 
below. 
 

 

Fig. 6. Example DBSCAN with various eps value between 1.0 to 3.0 
with the same minimum number of points is 10 points. 

The DBSCAN is an unsupervised learning algorithm, so it 
does not need to train before running the clustering, this is the 
main advantage of this approach. But it has some drawbacks, 
Fig. 6 illustrates an example when changing the eps number 
and remaining the minimum point in each cluster, which has 
reduced the number of clusters when increasing the eps value. 
Following this experiment, DBSCAN is good for clustering 
the various vehicle, even small motor-bike vehicles. But it is 
not the optimal solution, in Fig. 6 (a) the eps =1.0 then the 
neighbor in the car object is a mixture, and the algorithm 
returns two clusters in one object. Moreover, in Fig. 6 (b-c) 
the eps =2.0 - 3.0, the number of clusters is decreased, and get 
more clustering errors by grouping two objects into one 
cluster. It is quite tricky to choose the optimal eps and 
minimum points in this algorithm. 

IV. EXPERIMENTAL RESULT 

This section shows the roadside hardware setup and the result 
of experiments. A mounting plate for 3D LiDAR and housing 
for Jetson TX2 integrated Connect Tech carrier board is 
designed and printed by using 3D printing machine with PLA 
material, which is illustrated in Fig. 7. 

 

Fig. 7. 3D printing mounting object for LiDAR (left), housing Jetson 
TX2 (middle) and tripod mounting (right) 

The roadside system of the experimental platform setting up is 
shown in Fig. 8. This system includes 3D Lidar HDL-32E, 
LCD monitoring, Ublox M8N GPS module, Jetson TX2 
integrated with Connect Tech shield is the main embedded 
computer and 12V power supply. The system connects all the 
modules together and works properly in normal daylight 
conditions. 



 

Fig. 8. Roadside system setup in the field test (left), setting lidar at 
the middle of the lane (right) 

The roadside system is setup at the location, which longitude 
and latitude location are [11.014811, 106.662682], 
respectively, which is shown in Fig. 9. 

 

Fig. 9. Field site for collecting point cloud data in geometry location 
[11.014811, 106.662682] (left), sample LiDAR data frame (right) 

In order to test the vehicle detection of the algorithm, we 
counted the number of down sampling points, crop and ground 
removal points, and the number of vehicle detection at each 
stage in multiple environments. The code was implemented 
using Python and the Open3D framework [13]. These data 
have been compared with the number of vehicles counted by 
humans. 

Table 1. Result of vehicles detection in different scenes 

Scene Points 
number 

Down 
sampling 
points 
number 

Crop & 
Ground 
removal 
points 
number 

Number of 
vehicle 
detection by 
algorithm 

Number 
of vehicle 
counted 
by human 

Scene 1 69120 28287 9201 3 4 

Scene 2 69504 26677 8303 7 8 

Scene 3 69120 26423 2679 8 10 

Scene 4 69120 26789 1226 9 11 

Scene 5 69504 26325 5053 11 12 

Scene 6 69120 27643 6075 10 13 

Total 415488 162144 32537 48 58 

 

In the vehicle detection part, as shown in Table 1, the total of 
raw point cloud collecting was 415488 points, after down 
sampling the points number has 39.02% of the original data. 
After the crop and ground segmentation part, the number of 
points dramatically reduced by 92.16%, it only has 35537 
points. 

 

Fig. 10. Visualization of the result of vehicles detection in 
different scenes 

 
The visualization of vehicle detection result in different 6 
scenes, which is illustrated in Fig. 10. It is clear to see the 
unsupervised learning algorithm can detect mostly vehicles in 
the road, this can detect 48 over 58 vehicles, and vehicle 
detection precision was 82.7%, and some vehicles connected 
with bushes and cannot be separated. The four wheels vehicle 
detection precision was 80% over the dataset.  
 

V. CONCLUSION 

This study describes a vehicle detection procedure that mostly 
consists of four steps: To acquire objects above the ground by 
using LiDAR and get the raw point clouds, first down-
sampled, crop point clouds data and ground points are 
eliminated, then clustering the vehicles by using the 
unsupervised learning DBSCAN approach. In the Velodyne 
HDL-32E dataset, our method achieved 82.7 % precision for 
total vehicle detection, and 80% precision for four wheels 
vehicle detection in six scenes. The error has come from the 
clustering process, some small vehicles such as bikes and 
motorbikes can be neglected, and occlusion between vehicles 
reduced the accuracy. Future research will take into account 
RGB cameras and other sensor data to increase detection 
accuracy. Moreover, deep learning methods are considered to 
deal with further detection and classification applications. 
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